Robust small sample accurate inference in moment condition models
نویسندگان
چکیده
Procedures based on the Generalized Method of Moments (GMM) (Hansen, 1982) are basic tools in modern econometrics. In most cases, the theory available for making inference with these procedures is based on first order asymptotic theory. It is well-known that the (first order) asymptotic distribution does not provide accurate p-values and confidence intervals in moderate to small samples. Moreover, in the presence of small deviations from the assumed model, p-values and confidence intervals based on classical GMM procedures can be drastically affected (nonrobustness). Several alternative techniques have been proposed in the literature to improve the accuracy of GMM procedures. These alternatives address either the first order accuracy of the approximations (information and entropy econometrics (IEE)) or the nonrobustness (Robust GMM estimators and tests). In this paper, we propose a new alternative procedure which combines robustness properties and accuracy in small samples. Specifically, we combine IEE techniques as developed in Imbens, Spady, Johnson (1998) to obtain finite sample accuracy with robust methods obtained by bounding the original orthogonality function as proposed in Ronchetti and Trojani (2001). This leads to new robust estimators and tests in moment condition models with excellent finite sample accuracy. Finally, we illustrate the accuracy of the new statistic by means of some simulations for three models on overidentifying moment conditions.
منابع مشابه
New Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملIdentication-Robust Subvector Inference
This paper introduces identi cation-robust subvector tests and con dence sets (CSs) that have asymptotic size equal to their nominal size and are asymptotically e¢ cient under strong identi cation. Hence, inference is as good asymptotically as standard methods under standard regularity conditions, but also is identi cation robust. The results do not require special structure on the models unde...
متن کاملAccurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملAlleviating the Small-Signal Oscillations of the SMIB Power System with the TLBO–FPSS and SSSC Robust Controller
Power systems are subjected to small–signal oscillations that can be caused by sudden change in the value of large loads. To avoid the dangers of these oscillations, the Power System Stabilizers (PSSs) are used. When the PSSs can not be effective enough, installation of the Thyristor–based compensators to increase the oscillations damping is a suitable method. In this paper, a Static Synchronou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2012